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INTRODUCTION

Soil, as a particular resource, plays a vital 
role in the sustainability and survival of civili-
zations. It can secure the provision of food and 
other essential goods (Hillel, 2009). This re-
source presents different physicochemical and 
biological properties that influence their diverse 
potentialities of use, such as agronomic produc-
tivity (Anderson, 2005; Resende et al., 2014).  
Characterization of those properties is consid-
ered as a key element for adequate soil manage-
ment and conservation (Severiano, et al., 2009). 

Generally, the soil is characterized by rapid deg-
radation rates and slow regeneration processes 
(Van-Camp et al., 2004). This degradation can 
affect the productivity and the environment as 
well, which makes it more disastrous in case it 
occurs in the soil plastic state (Zuazo & Plegue-
zuelo, 2009). Thus, researchers have defined the 
plastic state as the range of soil moisture content 
in which soil has a plastic consistency.

The limits of this state (plastic limits) are 
also known as Atterberg limits in tribute to the 
work of Atterberg (Atterberg, 1911). In this 
state, soil can be sheared without forming cracks 
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(Campbell & O’Sullivan, 1991). The moisture 
content that reveals the plastic properties of the 
soil can be determined by the plasticity index 
(Pi) (Gobinath, 2016; McBride et al., 2008).  

In this context, soil plasticity or plastic lim-
its were perceived through a specific approach 
(Campbell & O’Sullivan, 1991), which is the 
water film theory. In this approach, the soil is in 
its plastic consistency. That is to say that the clay 
particles are surrounded by the water and slide 
each other. Moreover, if any vertical force is ap-
plied, the soil water tension can be increased and 
leads to plastic deformation of the soil without 
any regeneration. The soil water retention capac-
ity controls the delay of this plasticity. The latter 
depends on the physical properties, especially 
the clay content (% C) and SOM (Bahmani & 
Palangi, 2016; Merdun et al., 2008).

In this regard, the total water storage (maxi-
mum water quantity) that can be received by the 
soil is determined by the measurement of several 
soil properties (Nyvall, 2002). SOM has a high 
retention capacity, and it is known as an essen-
tial factor that can be practical for use in soil 
water conservation, especially in the agricultur-
al sectors (Stone & Garrison, 1940). In this re-
spect, several studies have specified the amount 
of SOM that can contribute to water retention 
(1% SOM hold around 233,750 L/ha) (Steven-
son, 1994; Mengel, 2012). In another study, Em-
erson (1995) indicates that SOM can contribute 
between 2.2% to 12.5% of the available water. 
This contribution is determined by soil texture, 
treatment, and some parameters such as organic 
materials and bulk density. The water content is 
influenced not only by the presence of SOM, but 
also by the clay percentage. 

Thus, Vertisols, which are charac-
terized by a significant presence of clay 
(>35%), can absorb more water when 
clay swelling occurs (Khitrov, 2016). 

Vertisols, in general, are very fertile soils in 
many developed and developing countries (Ah-
mad & Mermut, 1996). These soils are often 
used for agricultural productions (Coulombe et 
al., 1996). In the American stratification (US-
SEA, 1975), Vertisols are characterized by 
several properties (shrinking/swelling) due to 
the variation of the moisture content (Booltink 
et al., 1993). However, direct measurement of 
soil hydraulic properties is very important but 
is costly and time-consuming (Minasny & Har-
temink, 2011; Rustanto et al., 2017). Thus, the 

development of alternative, rapid, and inexpen-
sive methods to estimate those properties is a 
good way for active and new investigations (Pa-
til & Singh, 2016; Tomasella & Hodnett, 2004).

The majority of the environment model-
ing work requires quantitative soil informa-
tion primarily at the regional scale (Gessler et 
al., 1996; Minasny et al., 2008; Hartemink & 
McBratney, 2008). The prediction techniques 
have become more popular, and they offer a 
faster way to estimate different soil attributes 
(Amanabadi et al., 2019). In this context, 
several studies have used the machine learn-
ing algorithms for modeling the soil classes 
and properties (Huang et al., 2002; Rogan et 
al., 2003; Sedaghat et al., 2016). These algo-
rithms are rapid and operational in the field of 
soil science (Foody, 2002; Friedl & Brodley, 
1997). The machine learning techniques can 
predict the soil properties for unvisited regions 
using the interrelationship with several covari-
ates such as slope (McBratney et al., 2000), 
remote sensing parameters (Odeh & McBrat-
ney, 2000), soil characteristics and climatic 
conditions (Akpa et al., 2014). Some of the 
major machine language techniques used in 
Soil Parameters Prediction (SPP) are classifi-
cation and regression trees (Breiman, 2001), 
k-nearest neighbor (Mansuy et al., 2014), mul-
tinomial logistic regression (Kempen et al., 
2009), logistic model trees (Giasson et al., 
2006), Support vector machine (Kovačević et 
al., 2010 ; Priori et al., 2014) and Random For-
est model (Vågen et al., 2016). In this sense, 
(Rodriguez-Galiano, & Chica-Rivas, 2014) 
have compared some machine learning tech-
niques, and they found that the Random For-
est Method (RFM) is the most accurate and the 
most robust in noise and data reduction. It can 
operate the quantitative and qualitative datas-
ets (Amanabadi et al., 2019). The potential of 
RFM in SPP has been proven by several stud-
ies (Grimm et al., 2008; Hastie et al., 2009; 
Vågen et al., 2016; Sreenivas et al., 2016).

The main objective of this study was to char-
acterize the Vertisol in the Doukkala-Abda re-
gion of Morocco and to evaluate the effect of 
soil physical parameters on its moisture content 
in different fields of the region. Additionally, it 
aimed to examine the possibility of using the 
machine learning algorithms, the Random For-
est method to predict the plasticity state of Ver-
tisol in the region.
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MATERIALS AND METHODS

Localization of study zone

The study zone is part of the area of the coast-
al Meseta in southern Morocco. It is limited in the 
north and northwest by the Atlantic Ocean, in the 
east by Oued Oum Er-rbia and the plain of Cha-
ouia, in the south by the Mouissate collines, and 
in the southwest of the Abda and Rhamna mas-
sif (Fig. 1). From a geological view, the region is 
part of the domain of coastal Morocco (Meseta), 
which is framed by the chains of the Atlas and Rif.

The importance of Vertisol in the Doukkala 
region of Morocco 

Several studies have attempted to map the 
geographical distribution of Vertisol in Morocco 
(Villar, 1953; Watteau, 1967; Bryssine, 1971). 
Generally, this soil type is localized in the plains 
of Doukkala, Chaouia, Zaer, Gharb, Loukkous, 
Tangier, Pre-Rif, Sais, Tadla and Haouz. In 1965, 
Wilbert estimated the area of Vertisol in Morocco 
that was about 0.2 Mha. Later on, the latter proved 
to be less than the real estimation of the area. Re-
turning to previous studies, almost 6.5 Mha of 
soil studies that have been carried out over the last 
decades at different scales allowed us to estimate 
an area of 0.9 Mha of Vertisols distributed over 
several regions of Morocco. The values   of the ar-
eas occupied by Vertisol across the country were 
cursorily estimated, as few studies have tried to 

carry out an accurate estimation of Vertisols in the 
regional scale. As it was reported previously, the 
determination of the Vertisols in the Doukkala-
Abda region and their plasticity was the objective 
of this study for managing the agricultural practi-
cability. The different samples are represented in 
Figure 2. Here, the analysis shows that Vertisols 
represent around 29% (187 879,4 ha) in the to-
tal area of the region, which is a high percentage 
(Table 1). 

The adequate management of this vast area 
can lead to improving the agricultural productiv-
ity and the economy. Moreover, it can reduce the 
physical degradation of the area, especially its 
compaction. Vertisols have high yield potential 
and are dedicated to intensive crop production. 
They are considered as the most sensitive soils to 
physical degradation (compaction) based on their 
high clay and water contents during agricultural 
operations.

Soil sampling and analyses

In the course of the research, 120 soil samples 
were collected from agricultural fields in differ-
ent locations in the study area. The sampling pe-
riod was between January and June 2019. These 
samples represent soils with different geological 
histories, under different climatic conditions and 
different soil management. Still, they almost have 
the same range of soil texture and OM content. 
Here, all the soils collected are the Vertisols of 
the region. 

Fig. 1. Geographic localization of the Doukkala region in Morocco
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Vertisol plasticity was evaluated using the 
ATL method (Atterberg, 1911). A hydraulic press 
was used to evaluate the plasticity limits for the 
120 soil samples (7 treatments and 4 replicates). 
Each sample (< 2 mm) was poured in a press 
cylinder (269.26 cm3) and humidified by tap wa-
ter (150 mL). Each replicate sample was pressed 
up to 6 bar during different days (1st, 2nd, 3rd, 4th, 
5th, 10th and 15th days) to show the variation of 
volume according to the moisture content. This 
method was developed in a previous study, in 
order to measure soil plasticity (Al Masmoudi 
et al., 2019).

The physicochemical evaluation of the Douk-
kala-Abda Vertisols was performed to character-
ize the quality of the samples. The parameters an-
alyzed are texture (the percentage of clay, silt and 
sand) using Robinson Pipette, Electrical conduc-
tivity (EC) using an EM 38 conductivity meter, 

SOM using Walkey and Black method, Sodium 
oxide Na2O (extracted by ammonium acetate so-
lution), N-NO3, N-NH4, Boron B, Iron Fe, Man-
ganese Mn, Zinc Zn, Copper Cu and the plasticity 
for the 120 samples. 

Statistical analyses of data

In order to analyze the relationship between 
the parameters and plasticity, a statistical analysis 
was carried using the Statistical Package for So-
cial Sciences (SPSS). This is done to obtain vari-
ous statistical parameters such as the min, max 
and mean of values in each parameter of the soil 
samples and evaluate the difference, using the 
Skewness and Kurtosis statistical tests.

Random Forest Model

Random forest (RF) is considered an algo-
rithm that allows an exploration of data, analysis 
and predictive modeling (Breiman, 2001). This 
algorithm is relatively robust to errors and outli-
ers. That is to say, when the number of trees in the 
forest is large, the generalization error converges. 
Still, the over fitting of the training dataset can-
not be a problem (Han et al., 2012). Several pa-
rameters influence the RF accuracies, such as the 
strength of the individual classifiers and the level 
of dependence between each other. Maintaining 
the strength of individual classifiers is ideal and 
optimal without increasing their correlation. The 

Table 1. Areas of different soil types in the Doukkala 
region

Soil type Soil area 
(ha)

Percentage 
area (%)

Poorly developed 
Calcimagnetic soils 357981 53.61

Vertisols 187879.4 28.14
Soils with iron 
sesquioxides 101531 15.21

Poorly developed soils 12214.5 1.83

Calcimagnetic soils 6176.8 0.93

Hydromorphic soils 1954.8 0.29

Fig. 2. Localization of the soil sampling sites
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RF model is characterized by a potential that can 
improve prediction using the classification and 
regression trees (Breiman, 2001). Indeed, the 
trees are constructed using the entire dataset and 
the splits at each node are made from the best ran-
domly selected subset of predictors from the entire 
suite of input variables, which prevents over-fit-
ting (Liaw & Wiener, 2002). The most important 
parameters that must be defined are the number 
of trees (ntree) and the number of variables ran-
domly sampled to be tested at each node (mtry).

Development of RF model and accuracy 
assessment

In constructing the predictive plasticity mod-
el, the RF model was trained using 75% of data 
that corresponds to 90 soil samples, and the re-
maining samples 25%, which corresponds to 
30 samples, were used for model validation. The 
parameters used for the development of the mod-
el do not require any preprocessing (unlike, e.g., 
the Linear Multiple Regression) and this is one of 
the advantages of this machine learning model.

The performance of the model developed by 
Random Forest was examined by comparing the 
difference between the observed and predicted 
plasticity coefficient, using two parameters, the 
coefficient of determination (R2) and the root 
mean square error (RMSE).

𝑅𝑅2 = 1 −
∑ (𝑂𝑂𝑖𝑖 − 𝑃𝑃𝑖𝑖)2𝑛𝑛
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(1)

where: Oi, Pi and Ō are the observed, predicted 
and mean Oi value at site i, respectively; 
and n is the number of samples.

RESULTS

Plasticity results

The plasticity state of the different Vertisols 
in the region (120 samples) shows different 
plasticity delay (per day). The plasticity dura-
tions vary from 3 days to 8 or 12 days. On the 
basis of these results, the farmers can manage 
their Vertisol for the agricultural practicability 
according to the plasticity delay of their soils, 
considering the physicochemical parameters 
and the texture. Indeed, the soil plasticity state 
can be evaluated concerning the soil moisture 
content in order to timely manage the induc-
tion of machines to avoid Vertisol degradation 
(soil compaction). The Atterberg limits con-
ventionally translate these differences in Verti-
sol behavior as a function of the water content. 

Table 2. Statistical analysis of several parameters of different Vertisols of Doukkala (120 samples)

Specification Min Max Mean Ecart-type Skewness Kurtosis

Clay 37.00 48.80 41.65 2.62 0.67 0.05

Sand 26.80 55.20 42.16 4.82 -0.05 0.32

Silt 6.20 32.90 16.19 3.89 0.31 2.33

EC 0.04 1.40 0.80 0.44 -0.26 -1.27

SOM 0.80 3.40 1.87 0.60 0.24 -0.30

CaCO3 0.00 20.10 1.35 3.33 4.07 17.79

Na2O 85.00 1790.00 464.63 220.75 3.36 16.28

pH 6.40 9.90 8.33 0.60 -0.15 -0.02

NT 0.06 0.17 0.10 0.02 0.90 1.37

N-NO3 0.09 7.59 0.94 0.91 4.03 24.12

N-NH4 0.01 0.70 0.24 0.14 0.70 0.47

B 0.17 1.07 0.32 0.12 3.17 16.17

Fe 2.22 33.78 12.69 6.23 1.02 1.11

Mn 1.59 34.06 6.56 4.12 2.97 16.14

Zn 0.13 3.55 0.55 0.43 3.74 20.65

Cu 0.12 1.12 0.41 0.17 1.19 3.56

Plasticity 3.00 12.00 8.08 2.18 -0.35 -0.46
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Said differently, while the liquid limit charac-
terizes the transition between the plastic state 
and the liquid state, the plastic limits mark the 
transition between the solid-state and the plas-
tic state. Soil compaction is influenced by the 
moisture content. Dry soil is more difficult to 
compact than wet soil. If the water content 
increases to replace all the air occupying the 
pores, the soil cannot be compacted because 
the water is almost incompressible. The proctor 
compaction test is used to estimate the plastic-
ity limits, that represent the phase when the soil 
is vulnerable to physical degradation (soil com-
paction). If the water content of a soil sample 
decreases, the soil successively changes from a 
liquid state to a plastic state, which is the most 
vulnerable state to compaction, for the soil is 
subject to irreversible deformation despite its 
stability, then to a solid-state.

Statistical analysis

The analytical data of the samples used for 
model building are presented in Table 2. There 
is some difference in the values of several evalu-
ated soil parameters, as demonstrated in Table 2, 
the texture of different soils is almost the same, 
and the percentage of clay varies between 37 
and 48% for the 120 soil samples. Sand and silt 
vary between 26.80–55.20% and 6.20–32.90%, 
respectively. Those soils present a percentage of 
SOM varied between 0.80–3.40% with a mean 
of 1.87%. Moreover, the electrical conductivity 
in the soil samples was important, reaching be-
tween 0.04–1.40 ms with a mean of 0.80 ms. The 
elevation of soil salinity in the coastal region is 
generally due to marine intrusion. Generally, data 
are highly skewed. Furthermore, CaCO3, Na2O, 
N-NO3, B, Mn and Zn represent high kurtosis val-
ues, which means the presence of several outliers. 
Low kurtosis in a data set is an indicator that this 
data has light tails or a lack of outliers for some 
parameters such as clay, sand, EC, SOM, pH, and 
soil plasticity. 

Considering the 120 samples, a high ampli-
tude was obtained for the studied parameters. 
They also represent variability in different pa-
rameters. This variability of data can contribute 
to generating more reliable models with possible 
use for the soils with similar conditions, since the 
used values contemplate a wide range of values of 
the analyzed properties. Figure 3 presents the dif-
ferent correlations between all parameters. Here, 

the clay content shows a significant correlation 
with the plasticity delay that goes in accordance 
with the high capacity of water retention. The 
same correlation was observed between the SOM 
and the plasticity is generally due to the capacity 
of OM to conserve water in the soil.

In the same figure, a significant correlation 
was found between the EC and the plasticity, 
which means that the soil can hold a greater quan-
tity of water in the presence of some percentage 
of salinity. As it was expected, the different land 
uses of various areas and soil management prac-
tices, as well as the previous culture, can provide 
us with different values of several parameters that 
can, in turn, influence the plasticity timing and 
thus, the soil plasticity. 

Random Forest results and the importance of 
variables

The performance of the Random Forest 
model was evaluated by calculating uncertainty 
indicators such as Coefficient of determination 
(R2) and Root Mean Square Error (RMSE). For 
the training phase, the model gave excellent 
results with a coefficient of determination of 
0.995 and an RMSE of 0.164 (Fig. 4). Almost 
the same results were observed in the valida-
tion phase with a coefficient of determination 
of 0.974 and an RMSE of 0.361, which shows 
that the model succeeded in predicting plastic-
ity in both phases. According to these results, 
the model can be used for the prediction of this 
parameter in the case of the availability of the 
input data and especially the most important pa-
rameters in the prediction.

In the same sense, the main aims behind 
such an attempt to develop this model are to 
predict the plasticity delay of the Vertisols 
and to look for the parameters influencing the 
model development. Figure 5 shows the param-
eters that play an important role in the soil’s 
capacity for water retention and, consequently, 
its duration in the plastic phase. According to 
the obtained results, the most relevant param-
eters are hydraulic conductivity, clay content 
and SOM. Meanwhile, the analysis of the same 
figure shows that the chemical parameters such 
as CaCO3, Zn, soil pH, Cu and Zn do not influ-
ence the capacity of the soil to hold the water. 
In other words, the model developed did not 
perform well due to the high variability of soil 
properties and low terrain variation. 
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DISCUSSION

Unfortunately, the studies that predict the soil 
plasticity using RF are scarce to non-existent, 
making it impossible to compare our prediction 
results to other findings. Nevertheless, a compari-
son can be made using the research that used this 
type of model, especially RF, to predict other soil 
parameters.

In that way, Rawls et al (2003), who based 
their study on the USDA and NRCS soil survey 
characterization database, have revealed that 

the soil water retention depends on the SOM 
and clay contents in the soil. Moreover, the 
increase of the SOM leads to increased water 
retention in the different soil textures. The lat-
ter is due to the deceases in the bulk density 
that affect the structure and aggregation of soil. 
In another system, the presence of the SOM 
in the O horizon can increase the soil water-
holding capacity, which can, in turn, intercept 
the rainfall. In this regard, Hudson (1994) in-
dicates that the increase of SOM from 0.5% to 
3% leads to an increase in the water retention 

Fig. 3. Statistical correlation between physicochemical parameters of the Doukkala Vertisols

Fig. 4. Coefficient of determination (R2) and Root Mean Square Error (RMSE) for training (A) and validation 
 phases (B)
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capacity about the double in the three textures 
groups (sands, silt loams, and silty clay loams). 
On the basis of our results, there was a signifi-
cant correlation between OM and plasticity de-
lay (R2 = 0.949). Here, the SOM has a strong 
effect on the plastic limits. This effect was es-
pecially evident while analyzing the soils of 
similar texture with a range of SOM contents. 
Still, it will be more specific when we analyze 
the soils from different treatments of long-term 
field experiments. Blanco-Canqui et al (2006) 
has reported that soil management significantly 
affects the soil consistency, and he has found 
significant positive correlations between SOM 
and plasticity period in the agricultural soils, 
which is in agreement with our results present-
ed previously (Fig.3). Therefore, Keller & Dex-
ter (2012) have developed an equation related 
to the plasticity limits and the clay content: 

PL = 10.55(1.64) + 4.63 (0.241) SOM;  
R2 = 0.960 (2)

The plastic limits are affected not only by 
SOM but also by the soil texture, especially 
the clay content, as shown in the previous part 
(Fig.3 and Fig.5). According to the results of this 
study, it was a positive correlation between the 
clay content and plasticity delay (R2 = 0.9050). 

As mentioned in the Keller study (Keller et 
al., 2012), soil plasticity is related to the specific 
surface area (SSA) of the soil particles for the 
small particles have a higher SSA than the large 

ones. In this context, we found that the plastic 
limits were much more strongly correlated with 
the clay content comparing with either the silt or 
sand content. 

Furthermore, in some previous studies (Butler, 
1955; McIntyre, 1976), authors have found that 
sometimes the correlation between plastic limits 
and the clay content may be very low. They re-
vealed that the soil has no visible structure. The 
reasons behind this state may be the low SOM of 
these soils or the existence of micro-aggregated 
clay that consists of sub-plastic (Butler, 1955; 
Keller & Dexter, 2012; McIntyre, 1976) has come 
with an equation that relates the plasticity limits 
and the clay content: 

 PL =  
 = 21.28 (0.812) + 0.004 (0.0004) Clay2;  
 R2=0.578

(3)

The management of soil moisture content, 
especially its plastic state, can control its prac-
ticability and disregard the physical degrada-
tion of soil, particularly its compaction. The 
compaction can occur in the cropping cycle 
and affect the crop yield and performance. This 
physical degradation can be more severe and 
intense when it is applied to a Vertisol under its 
plastic state. In a degradation phase, the behav-
ior of the latter changes depending on its struc-
ture and type of dominant clay. The field crop 
losses were due to the intensity of agricultural 
traffic and tillage practices.

Fig. 5. Variable importance rankings of RFM model for prediction of soil plasticity  
(% IncMSE = percent increase in Mean Square Error)
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CONCLUSIONS

The Vertisols of the Doukkala region of Mo-
rocco represent an agronomic richness with regard 
to their importance in agronomic productivity. 
Unlike the other types of soil, their physicochem-
ical characteristics show a specific identity. The 
Vertisols of this region cover a significant area 
compared to the total area of the region. There-
fore, the good management of this type of soil 
and its state of humidity is an essential approach 
for its preservation and for the sustainability of 
its productivity. This study evaluated the link be-
tween soil plasticity and other physicochemical 
parameters of Vertisols. SOM, clay content and 
electrical conductivity are the most relevant pa-
rameters that can contribute to soil water storage. 
Here, it is moisture content that can control the 
plasticity limits. Indeed, the realization of a mod-
el in Random Forest method can give a precise 
and accurate prediction of the Vertisol plasticity 
delay under the semi-arid conditions and identify 
the Vertisol parameters that influence the model 
development.
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